Agentic AI with Andrew Ng

test

Building Live Voice Agents with Google’s ADK — A Practical Course by DeepLearning.AI
I present a concise briefing on a new DeepLearning.AI course about agentic AI.
This course focuses on building live voice agents and agentic workflows.
Why does this matter to you?

  • Because agentic AI can automate multi-step business processes that single prompts cannot.
  • Because the course teaches practical implementation in Python from first principles.
  • Because the instructor is Andrew Ng, and the course awards a certificate after completion.

Agentic Design Patterns
Agentic AI is about iterative, multi-step workflows rather than single-shot responses.
It uses patterns like reflection, tool use, planning, and multi-agent coordination.
What do these patterns enable?
They let models plan, execute, and improve over several steps.
I recently prototyped a small planning agent to coordinate data collection and found iteration reduced errors quickly.
Example prompt snippet for a reflection loop:

System: You will review the draft report and list three improvements. 
User: Draft report attached. 
Assistant: Step 1 - Check facts. Step 2 - Suggest structure changes. Step 3 - Propose visualizations.

Tool Integration and Execution
Tool use means connecting models to databases, APIs, web search, or code execution.
Why connect tools?
Because real tasks need world access and reliable outputs.
The course covers function calling, code execution, and the Model Context Protocol (MCP).
Example code prompt for calling a function:

Request: fetch_latest_prices(product_id=12345) 
Assistant: Call function and return JSON of prices by region.

Evaluation, Planning and Multi-Agent Systems
Good systems need metrics, error analysis, and production readiness.
What makes a planning agent different?
It composes multi-step plans and can delegate to specialized agents.
The course includes a capstone to build a full research agent.
Example planning prompt:

Task: Create a 4-step plan to research competitor features and summarize differences.

Wrapping up
This course teaches practical, production-oriented agentic AI skills.
You will learn four core design patterns and how to evaluate systems in the wild.
It is aimed at developers with intermediate Python and basic LLM experience.
Interested in the syllabus or enrollment details?
Find the course here: https://www.deeplearning.ai/courses/agentic-ai/?utm_campaign=24113415-agentic-ai&utm_content=350623501&utm_medium=social&utm_source=twitter&hss_channel=tw-992153930095251456
For C-level and technical leaders, agentic workflows change what automation can do.
They make complex, multi-step processes automatable and measurable.
This is where generative AI delivers tangible business value through improved efficiency and repeatable outcomes.

6 Kommentare

Sarah Mitchell

This is exactly what I needed! I’ve been following Andrew Ng’s courses for years, and agentic AI is the next frontier. The practical approach with Python implementation sounds perfect for developers like me who want to move beyond theory. Can’t wait to dive into the reflection and planning patterns!

Marcus Weber

Endlich mal ein Kurs der über reine Theorie hinausgeht! Ich arbeite derzeit an einem Multi-Agent-System und die Patterns die hier beschrieben werden sind genau das, was wir brauchen. Hat jemand schon Erfahrungen mit dem Model Context Protocol gemacht? Würde mich interessieren wie gut das in der Praxis funktioniert.

Jennifer Liu

Great to see Andrew Ng teaching this! Quick question – does the course cover error handling and retry logic for tool calls? I’m building a financial data agent and need robust error recovery patterns. Also curious about the multi-agent coordination examples – are they using specific frameworks like LangChain or more vanilla Python?

Laura Schmidt

Ich bin absolut begeistert von diesem Kurs! Habe letztes Jahr schon den Deep Learning Specialization gemacht und Andrew Ng erklärt einfach unglaublich gut. Die Kombination aus Design Patterns und praktischer Implementierung ist genau richtig. Besonders gespannt bin ich auf das Capstone-Projekt mit dem Research Agent. Danke für den Link!

David Thompson

Interesting course outline! I’m particularly excited about learning the evaluation metrics for agentic systems – that’s something most tutorials skip. One concern though: how production-ready are these patterns? Has anyone deployed similar architectures at scale? Would love to hear about latency and cost considerations for real-world applications.

Petra Müller

Super Timing für diesen Kurs! Unser Team evaluiert gerade verschiedene Agent-Frameworks und die Design Patterns die Andrew Ng vermittelt sind fundamental wichtig um nicht im Tool-Chaos zu versinken. Besonders die Evaluation-Methoden werden uns helfen unsere Agents quantitativ zu vergleichen. Hat jemand Empfehlungen für Testing-Tools in dem Bereich?

Kommentar abschicken