GitHub – dair-ai/Prompt-Engineering-Guide: 🐙 Guides, papers, lessons, notebooks and resources for prompt engineering, context engineering, RAG, and AI Agents.

🐙 Guides, papers, lessons, notebooks and resources for prompt engineering, context engineering, RAG, and AI Agents. - dair-ai/Prompt-Engineering-Guide

Prompt Engineering Guide — Practical Resource for LLM Development
This post summarizes a comprehensive new resource for prompt engineering and related techniques.
It matters because prompt skills speed up development and reduce risk when you deploy large language models.
Why should you care?
• Learn the latest papers, tools, and lectures.
• Apply reproducible prompt patterns in production.
• Use hands-on courses to close skill gaps.

Header 1 — What is Prompt Engineering
Prompt engineering is the practice of designing and refining inputs to large language models to get reliable outputs.
It helps you understand both the strengths and the limits of LLMs.
Why does that matter to product teams and researchers?
Because small prompt changes often produce large differences in outcomes.
Example prompt snippet.
Prompt: „You are an expert analyst.
Summarize the following customer support conversation in three bullets.“
The snippet shows how to constrain format and role.

Header 2 — What’s Inside the Guide
The guide collects recent papers, learning material, lecture recordings, and tooling links.
It also links to practical courses on prompting, RAG, and AI Agents that follow a hands-on format.
You can run the repository locally to validate implementations or translations.
Example command to get started.
git clone https://github.com/dair-ai/Prompt-Engineering-Guide
Use that repo to inspect prompt templates and reference implementations.

Header 3 — Applying This at Work
Prompt engineering is useful across question answering, arithmetic reasoning, and retrieval-augmented flows.
It helps engineers design robust prompts and integration patterns with external tools.
Need a concrete example for RAG?
Prompt: „Use the retrieved document below to answer the user query.
Cite the paragraph number when you use a fact.“
That pattern reduces hallucinations and simplifies verification.

I recently used the guide to validate a translation prompt for a client.
I found an edge case in how context was truncated.
Fixing the prompt removed inconsistent outputs.

Wrapping up
The guide is a practical, up-to-date resource for teams building with LLMs.
It accelerates learning and encourages reproducible prompt practices.
The impact on GenAI adoption is straightforward.
Better prompts mean more reliable automation and clearer business value.
Explore the repository for direct examples and templates.
https://github.com/dair-ai/Prompt-Engineering-Guide

6 Kommentare

Sarah Mitchell

This resource is absolutely fantastic! I’ve been struggling to find a comprehensive guide that covers both the theory and practical aspects of prompt engineering. The RAG examples are particularly useful for my current project. Thank you for sharing!

Thomas Weber

Endlich eine umfassende Ressource zu Prompt Engineering! Die strukturierte Aufbereitung mit praktischen Notebooks hilft wirklich weiter. Besonders die Abschnitte zu AI Agents haben mir neue Perspektiven erĂśffnet. Sehr empfehlenswert!

Jennifer Park

I bookmarked this guide immediately! The hands-on courses and practical notebooks make it easy to apply prompt engineering concepts directly in my work. The section on context engineering is particularly valuable for understanding token limits and optimization strategies.

Marco Rossi

Wow, diese Sammlung ist Gold wert! Als jemand der gerade erst mit LLMs arbeitet, finde ich die Struktur sehr hilfreich. Die verschiedenen Kurse und Papers sind perfekt kuratiert. Hat mir schon bei zwei Projekten geholfen!

Dr. Elena Kovacs

Great compilation of research papers and practical resources! As a PhD student working on NLP, I appreciate how this repository bridges academic research with industry applications. The section on multi-step workflows for AI agents is exactly what I needed for my thesis.

Alex Chen

Perfekte Timing! Ich habe gerade mit einem RAG-System angefangen und war ßberwältigt von all den verschiedenen Ansätzen. Dieses Repository gibt mir eine klare Struktur und zeigt Best Practices. Die Jupyter Notebooks sind besonders nßtzlich zum Experimentieren.

Kommentar abschicken