GitHub – langgptai/LangGPT: LangGPT: Empowering everyone to become a prompt expert!

In this course taught by Andrew Ng, you'll build agentic AI systems that take action through iterative, multi-step workflows.

LangGPT: A Structured Prompt Framework for Reliable GenAI Outputs

LangGPT is a structured, reusable prompt design framework for large language models.
It treats prompts like code, with templates, variables, and modular sections.
Why this matters to you.
– It reduces trial-and-error when scaling prompt-driven workflows.
– It improves consistency across assistants and teams.
– It makes prompts auditable and reusable across projects.

What is LangGPT?
LangGPT is a „programming language for prompts“ that brings structure to prompt design.
It replaces scattered tips with templates and clear syntax.
The project includes an academic foundation (see arXiv:2402.16929) and a practical example library.
Example prompt snippet.
Persona:
Task: Summarize the contract clause into a 3-line executive summary.
Tone: concise and factual.

Core principles and building blocks
LangGPT uses modular sections to define personas, actions, and variables.
That keeps instructions consistent when conversations get long.
It supports reminders and alternative formats like JSON or YAML for systems that prefer structured outputs.
Example variable usage.
Use to inject dynamic content across sections.
Example: Replace to maintain brand-specific phrasing.

Applying LangGPT in enterprise workflows
You can adapt LangGPT templates to chat assistants, document generation, and research prototypes.
Prerequisites are simple: basic Markdown familiarity and a modern model such as GPT-4 or Claude.
Community templates and a contribution guide make it easier to onboard teams.
Example JSON output template.
{ „summary“: „„, „confidence“: „“ }
A brief anecdote.
I recently used a LangGPT template to standardize executive summaries across three product teams.
The result was clearer handovers and fewer follow-up questions.

Wrapping up
LangGPT makes prompt design systematic and repeatable for organizations.
It helps reduce variability and improves predictability when deploying GenAI at scale.
If you want to explore templates, examples, or contribute to the project, visit the repository.
https://github.com/langgptai/LangGPT
For C-level leaders, this means clearer governance over AI prompts and faster, measurable business outcomes.

6 Kommentare

Sarah Mitchell

This is exactly what the prompt engineering community needs! Having a structured framework like LangGPT makes it so much easier to collaborate and maintain consistency across projects. I’ve been struggling with prompt variability in our team, and this modular approach seems perfect. Can’t wait to try the templates!

Thomas Bauer

Hat jemand schon Erfahrungen damit gemacht, LangGPT in Produktionsumgebungen einzusetzen? Ich frage mich, wie gut es mit mehrsprachigen Prompts funktioniert. Die Dokumentation sieht vielversprechend aus, aber ich würde gerne echte Use Cases hören, bevor wir es in unserem Team implementieren.

Jennifer Wu

I’m honestly a bit skeptical. While structured prompts sound good in theory, I worry this might overcomplicate things for smaller teams. Sometimes the best prompt is just a well-written, natural instruction. Has anyone compared LangGPT’s output quality to standard prompting? I’d love to see some benchmarks before investing time in learning another framework.

Marco Rossi

Super Ressource! Ich habe LangGPT seit etwa 2 Monaten im Einsatz und die Community ist echt hilfsbereit. Der Trick ist, klein anzufangen – nimm ein simples Template, passe es an deine Bedürfnisse an, und erweitere es Schritt für Schritt. Die Lernkurve ist nicht so steil wie befürchtet. Besonders praktisch finde ich die Möglichkeit, Prompts zu versionieren wie Code.

Priya Sharma

Quick question for the community: Does LangGPT work well with non-English languages? We’re planning to roll out AI assistants in Spanish and Mandarin, and I’m wondering if the template structure translates smoothly. Also, any tips for onboarding non-technical stakeholders who need to review prompt changes? Thanks in advance!

Alex Chen

Amazing resource! I’ve been following the LangGPT project since early 2024 and it’s matured significantly. The combination of YAML structure and natural language makes it accessible for both developers and domain experts. One tip: start with the persona-task-constraints pattern, it’s the most transferable across use cases. The GitHub discussion forum is really active too!

Kommentar abschicken