GitHub – microsoft/agent-framework: A framework for building, orchestrating and deploying AI agents and multi-agent workflows with support for Python and .NET.

A framework for building, orchestrating and deploying AI agents and multi-agent workflows with support for Python and .NET. - microsoft/agent-framework

Microsoft Agent Framework: Practical Multi‑Language Agents for Production

Introduction
This post explains what the Microsoft Agent Framework is and why it matters to enterprise teams.
The framework is a multi‑language toolkit for building, orchestrating and deploying AI agents in .NET and Python.
Why should you care?

  • It provides repeatable architectures for agent workflows.
  • It includes samples, templates and language bindings you can reuse.
  • It surfaces operational and data governance requirements you must manage.

What the framework provides

The repository contains building blocks for everything from simple chat agents to graph‑based multi‑agent workflows.
You get sample projects, workflow templates and bindings for both Python and .NET.
That reduces ad hoc scripts and gives teams a consistent starting point.
Example snippet (conceptual Python):

from agent_framework import ResponsesAgent
agent = ResponsesAgent(provider="azure_openai", behavior="simple_chat")
agent.run()

Security and data governance

The project explicitly warns about third‑party servers and data egress risks.
Who owns retention and where data travels are organizational decisions.
What should you do first?

  • Audit and log every external call an agent makes.
  • Classify data before it leaves your boundary.
  • Require human review gates for outputs used in decisions.

Operational patterns and adoption

Teams often prototype in Python and productionize stable flows in .NET.
Graph orchestration makes it easy to chain specialized agents into clear pipelines.
Think normalizer → classifier → summarizer.
That pattern reduces handoffs and clarifies ownership.
A quick anecdote: I recently reviewed a pilot that used this exact pattern and it cut manual work while making validation steps clearer.

Wrapping up
The Microsoft Agent Framework is a pragmatic option for teams that need repeatable, multi‑step AI services.
It accelerates delivery while increasing responsibility for data governance and output validation.
What should leaders ask next?
How will we validate outputs, control data flows and assign ownership for model changes?
Start with a focused pilot, enforce data boundaries and review the repository and examples here: https://github.com/microsoft/agent-framework.
That is how you move from experiment to operational GenAI with manageable risk.

6 Kommentare

Sarah Chen

This framework looks really promising! I’ve been exploring multi-agent architectures and the dual Python/.NET support is exactly what our team needs. The graph orchestration pattern you mentioned makes so much sense for complex workflows. Has anyone tried this in production yet?

Thomas Müller

Endlich ein Framework, das nicht nur Python unterstützt! Als .NET-Entwickler freue ich mich riesig über diese Möglichkeit. Allerdings fehlt mir noch eine klare Dokumentation zur Fehlerbehandlung in verteilten Agent-Workflows. Wie geht ihr damit um, wenn ein Agent in der Kette ausfällt?

Alex Rodriguez

Great overview of the framework! One tip from our production experience: make sure to implement retry logic with exponential backoff for agent communication. We had some issues with transient failures that weren’t handled well initially. The graph orchestration helps, but you need to be explicit about error boundaries.

Julia Weber

Ich finde es beeindruckend, wie Microsoft hier einen Standard schaffen will. Aber mal ehrlich: Wieviel Lock-in kommt da mit? Was passiert, wenn ich später zu einer Open-Source Lösung wechseln will? Die Architektur sieht gut aus, aber ich wäre vorsichtig mit zu starker Abhängigkeit.

David Park

Interessanter Ansatz! Wir haben ein ähnliches Setup mit LangChain, aber die native .NET-Unterstützung fehlt uns. Eine Frage: Wie handhabt ihr das State-Management zwischen verschiedenen Agents? Bei uns führt das manchmal zu inkonsistenten Zustandsbeschreibungen.

Elena Martinez

Excellent breakdown! What I appreciate most is the emphasis on practical governance considerations. Too many frameworks ignore the operational side. Quick tip: in multi-agent setups, we found value in creating a central metrics dashboard to track token consumption, latency, and reliability per agent. Helps identify bottlenecks quickly.

Kommentar abschicken